Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study.
نویسندگان
چکیده
Time courses of incorporation of 13C from 13C-labelled glucose and/or acetate into the individual carbon atoms of amino acids, citrate and lactate in depolarized cerebral tissues were monitored by using 13C-n.m.r. spectroscopy. There was no change in the maximum percentage of 13C enrichments of the amino acids on depolarization, but the maxima were reached more rapidly, indicating that rates of metabolism in both glycolysis and the tricarboxylic acid cycle were accelerated. Although labelling of lactate and of citrate approached the theoretical maximum of 50%, labelling of the amino acids was always below 20%, suggesting that there is a metabolic pool or compartment that is inaccessible to exogenous substrates. Under resting conditions labelling of citrate and of glutamine from [1-13C]glucose was not detected, whereas both were labelled from [2-13C]acetate, which is considered to reflect glial metabolism. In contrast, considerable labelling of these two metabolites from [1-13C]glucose was observed in depolarized tissues, suggesting that the increased metabolism may be due to increased consumption of glucose by glial cells. The labelling patterns on depolarization from [1-13C]glucose alone and from both precursors [( 1-13C]glucose plus [2-13C]acetate) were similar, which also indicates that the changes are due to increased consumption of glucose rather than acetate.
منابع مشابه
Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain.
The time courses of incorporation of 13C from 13C-labelled glucose or acetate into cerebral amino acids (glutamate, glutamine and 4-aminobutyrate) and lactate were monitored by using 13C-n.m.r. spectroscopy. When [1-13C]glucose was used as precursor the C-2 of 4-aminobutyrate was more highly labelled than the analogous C-4 of glutamate, whereas no label was observed in glutamine. A similar patt...
متن کاملCerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy.
We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial gl...
متن کاملNeuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity.
Glial cells are thought to supply energy for neurotransmission by increasing nonoxidative glycolysis; however, oxidative metabolism in glia may also contribute to increased brain activity. To study glial contribution to cerebral energy metabolism in the unanesthetized state, we measured neuronal and glial metabolic fluxes in the awake rat brain by using a double isotopic-labeling technique and ...
متن کاملNMR studies of compartmentalized cerebral carbohydrate metabolism
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flu...
متن کاملGlutamate, glutamine, and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats.
BACKGROUND AND PURPOSE Even though the utilization of substrates alternative to glucose may play an important role in the survival of brain cells under ischemic conditions, evidence on changes in substrate selection by the adult brain in vivo during ischemic episodes remains very limited. This study investigates the utilization of glutamate, glutamine, and GABA as fuel by the neuronal and glial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 282 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1992